
2B11 Lecture Slides 2001

Copyright © 2001, Graham Roberts 1

Copyright © 2001, Graham Roberts Department of Computer Science1

2B11
Mini-Project I

Copyright © 2001, Graham Roberts Department of Computer Science2

Agenda

• Overview of mini-project

• XML

Copyright © 2001, Graham Roberts Department of Computer Science3

Mini-Project Idea

• Development of e-book (Electronic Book)
application to work with books represented
in XML.

• Up to you to decide what your application
actually does in detail.

Copyright © 2001, Graham Roberts Department of Computer Science4

Ideas?

• Display book text in pleasing way.

• Allow the selective display of chapters,
paragraphs, etc.

• Analyse text?

• Search text?

• Produce an index?

• Allow user annotations?

• You decide…

Copyright © 2001, Graham Roberts Department of Computer Science5

Oh yes – Testing!

• Your code must be totally tested.

• You must use JUnit.
– Test-first programming!

• Testing is the real point of doing this
coursework.

Copyright © 2001, Graham Roberts Department of Computer Science6

Mini-project Submission

• Deadline is noon Friday 14th December.

• Printed copy in to departmental office.

• Also submit source code electronically
using handin program.

• All testing code/data must be included.
– Don’t submit the books themselves!

• I should be able to compile and run your
program.



2B11 Lecture Slides 2001

Copyright © 2001, Graham Roberts 2

Copyright © 2001, Graham Roberts Department of Computer Science7

Marking

• Graded A-F

• C is satisfactory (basically works and
written OK).

• B, A for better.

• D, E for worse.

Proper testing is essential and will be heavily
weighted.

Copyright © 2001, Graham Roberts Department of Computer Science8

Getting Started

• A basic working program is provided to get
started (see 2b11 web pages).

• You can use/study this.

• Or start your own code from scratch.

Copyright © 2001, Graham Roberts Department of Computer Science9

But…

• The code provided is not good quality!

• Needs heavy refactoring (read the book).

• Needs proper commenting.

• But does include working XML parsing
code.

Copyright © 2001, Graham Roberts Department of Computer Science10

Questions?

Copyright © 2001, Graham Roberts Department of Computer Science11

XML

• XML – Extensible Markup Language

• Enables “portable data”.

• A way to markup data using tags (a bit like
HTML).

• Language and implementation independent.

Copyright © 2001, Graham Roberts Department of Computer Science12

XML (2)

• A standard being developed by the W3C
– Visit www.w3c.org

• A number of related standards: XSL, XSLT,
Xlink, Xpath, Xpointer.

• Rapidly being adopted for commercial use.



2B11 Lecture Slides 2001

Copyright © 2001, Graham Roberts 3

Copyright © 2001, Graham Roberts Department of Computer Science13

XML (3)

• How much do you need to know about
XML for this project?

• Up to you but you are encouraged to learn
about it.
– It will improve your employability.

• The example program handles the core
XML needed (unless you intend to modify
plays).

Copyright © 2001, Graham Roberts Department of Computer Science14

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Page SYSTEM "dtd/page.dtd">
<Page><Category>Department</Category>

<KeywordList>
<Keyword>Home Page</Keyword>
<Keyword>Index</Keyword>

<PageTitle>Department of Computer Science Home
Page</PageTitle>
<NavigationLinks>

<Link href="UCLHomePage" title="UCL Home"/>
<Link href="Research" title="CS Research"/>
<Link href="Search" title="CS Search"/>

</NavigationLinks>

Copyright © 2001, Graham Roberts Department of Computer Science15

XML Example (2)

• <Page>…</Page>
– Element called Page denoted by opening and

closing tags
– Closing tag starts with /.
– Content can be text or nested elements.

• The books have their own system of tags.
– Easy to follow by simple inspection.

Copyright © 2001, Graham Roberts Department of Computer Science16

Using XML

• An XML document must be well-formed.
– Element tags balanced and properly nested.

• And can be validated against a DTD
(Document Type Definition).

Copyright © 2001, Graham Roberts Department of Computer Science17

Using XML (2)

• An XML parser can read and validate an
XML document.

• An application program can use a parser to
read the data in an XML file.

Copyright © 2001, Graham Roberts Department of Computer Science18

Using XML (3)

DTD

XML
Document

Parser

SAX
Interface

DOM
Interface

Clientor

Using this in
example program



2B11 Lecture Slides 2001

Copyright © 2001, Graham Roberts 4

Copyright © 2001, Graham Roberts Department of Computer Science19

Using XML (3) – SAX

• Simple Api for Xml.

• Works by using call-backs method as each
element tag or content is encountered.

• Client can provide call back method
implementations to store data and build a
data structure.

Copyright © 2001, Graham Roberts Department of Computer Science20

Using XML(5)

• The example code uses a SAX2.0 parser
implementation.
– Use the Apache Xerces parser.

• The xerces.jar files need to be in your
classpath.

• See the 2b11 web pages for details.

• Read comments in code.

Copyright © 2001, Graham Roberts Department of Computer Science21

Questions?

Copyright © 2001, Graham Roberts Department of Computer Science22

The Example Program

• Can parse a book and build a rudimentary
data structure.

• No testing code included – you have to
write that!

Copyright © 2001, Graham Roberts Department of Computer Science23

Example Program (2)

GUI

Model
Data

Structure

Parser

= interface

Write

Read
Writer

Copyright © 2001, Graham Roberts Department of Computer Science24

Example Program (3)

• Overall structure broken into 4 main
components.
– 2 packages.

• Each component will be implemented using
some number of classes.

• Java interfaces and a connector class define
the connections between each component.

• Work to interfaces rather than specific
classes.



2B11 Lecture Slides 2001

Copyright © 2001, Graham Roberts 5

Copyright © 2001, Graham Roberts Department of Computer Science25

That’s It!

• Everything else is up to you.

• Plan what your application will do
carefully.

• Don’t get too ambitious.

• Keep things simple!
– But not too simple :-)

• Test everything.


